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Abstract. In the first part of the paper I present a simple structural model of supply and
demand, pose a policy question, and answer it in terms of the structural parameters. Then,
given some data, I show how to provide a realistic assessment of the uncertainty in that
answer. In the second part of the paper I present common modifications of the structural
system (in particular, scaling and renormalization) that turn out to make answering the
policy question more difficult or impossible.
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Introduction

I begin by presenting a simple structural model of supply and demand, posing a policy
question, and answering it in terms of the structural parameters. The policy question
involves the effect of demand shocks on equilibrium price. The answer can be obtained
via impulse responses. Then, given some available data, I show how to provide a realistic
assessment of the uncertainty in that answer.

The remainder of the paper presents common modifications of the structural system and
shows how they make it more difficult to answer the policy question. The modifications
are of two sorts. The first modification involves scaling the shocks by their standard de-
viations. The resulting impulse responses no longer directly address the policy question,
and they have the potential adverse side-effect of providing a false sense of precision. The
second modification is to renormalize the system, replacing the demand curve with an in-
verse demand curve. The renormalized system is no longer expressed in terms of demand
shocks (either scaled on unscaled) and consequently the impulse responses (either scaled or
unscaled) do not address the policy question.

In the final section of the paper I apply the likelihood preserving normalization of Wag-
goner and Zha (2003) and show it produces the inverse-demand-curve normalization, which
(as just noted) does not permit one to answer the policy question.

Part 1. To answer

1. Simple model of supply and demand

I present a very simple structural model of supply and demand. To keep things as simple
as possible I assume the supply curve is vertical and consequently equilibrium quantity is
exogenous. The demand curve, however, has finite and nonzero price elasticity.

Policy question. Suppose the policy maker has a policy tool that can produce a shock to
demand. The policy maker wishes to raise equilibrium price by one unit. Here is the policy
question:

How big a demand shock is required in order to raise equilibrium price by
one unit?

Structural model. It is possible to use the impulse responses implied by a structural
model to provide an answer to this question.

Here is the system of equations that characterizes the structure of this model:

qst = u1t (supply equation) (1.1a)

qdt = β pt + u2t (demand equation) (1.1b)

qdt = qst = qt, (equilibrium condition) (1.1c)

where qdt is the log of the quantity demanded, qst is the log of the quantity supplied, and pt is
the log of price. Thus, β is the elasticity of demand. We require β 6= 0 in order to guarantee
the equilibrium condition can be satisfied. The variables u1t and u2t are structural shocks.
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Figure 1. In this simple model of supply and demand, an increase in de-
mand of one unit from qdt to (qdt )′ raises price by −1/β units from pt to (pt)

′,
holding qst fixed.

The equations are normalized so that u1t is a supply shock and u2t is a demand shock:

∂qst
∂u1t

= 1 and
∂qdt
∂u2t

= 1. (1.2)

(Since quantity and price are measured in logs, a one unit change is equivalent to a one
percent change.)

By imposing the equilibrium condition (thereby eliminating qdt and qst ), the structural
system (1.1) can be expressed compactly as

Byt = ut, (1.3)

where

B =

(
1 0
1 −β

)
, yt =

(
qt
pt

)
, and ut =

(
u1t
u2t

)
. (1.4)

Note that each row ofB has an element set to 1. The location of these elements is determined
by the normalization.

Impulse responses. We can solve the system (1.3) for

yt = B−1 ut. (1.5)

Impulse responses measure how the equilibrium values of quantity and price respond to the
structural shocks. Consequently, the impulse responses are given by

B−1 =

(
1 0

1/β −1/β

)
. (1.6)
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In particular, a one unit demand shock will increase equilibrium price by −1/β units:1

dpt
du2t

= (B−1)22 = −1/β. (1.7)

See Figure 1. Consequently, it would require a demand shock of −β units in order to
increase equilibrium price by one unit.

Follow-up question. At the end of your presentation, the policy maker asks

So how big is −β?

The answer to this follow-up question involves statistical inference that depends on available
data. In the following two sections I show how to do such inference and I present a numerical
example as an illustration. The example shows that the information about β can be very
non-normal and very imprecise.

2. Inference from data

The analysis in Section 1 is relatively straightforward, but making inferences from data
about the sizes of the structural parameters is less so.

In this section I make distributional assumptions about the structural shocks, assump-
tions that involve parameters regarding the variances of the shocks. These distributional
assumptions induce a distribution on the observations of equilibrium quantity and price,
providing the data-generating distribution.

Conditional on a set of observations, the data-generating distribution provides a likeli-
hood for the parameters. That likelihood is then combined with a prior distribution for the
parameters in order to produce a posterior distribution. And that posterior distribution
completely characterizes inferences about the structural parameters.2,3

In Section 3 a numerical example is presented to illustrate the issues that arise in this
setting. The results are interesting and may even be surprising.

Model for the structural shocks. I assume the structural shocks u1t and u2t are each
normally distributed with zero mean and serially independent. Moreover, I assume they
are independent of each other. In particular,4

ut
iid∼ N(02, Σ), (2.1)

where 02 = (0, 0)> and

Σ =

(
σ21 0
0 σ22

)
. (2.2)

The structural parameters are (β, σ21, σ
2
2). They are the parameters that appear in ei-

ther (1.3) or in (2.1). The former provides a model for the way in which equilibrium
quantity and price are related to the structural shocks, while the latter provides a model
for the structural shocks themselves.

1Alternatively, we can totally differentiate the second row of (1.4) to obtain dqt − β dpt = du2t. Then
setting dqt = 0 produces dpt/du2t = −1/β.

2Appendix A presents a very brief introduction to Bayes’ rule.
3Maximum likelihood estimation is considered in Appendices G and H.
4See Appendix B for the probability density functions for this and other distributions.
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Distribution for the observations. We can use (2.1) to find the distribution of equilib-
rium quantity and price. Given (1.5), yt satisfies

yt
iid∼ N(02, G), (2.3)

where

G =

(
g11 g12
g12 g22

)
(2.4)

is a positive definite covariance matrix. In particular,

G = B−1Σ (B−1)> =

(
σ21 σ21/β
σ21/β (σ21 + σ22)/β2

)
. (2.5)

We can solve (2.5) for the structural parameters in terms of the elements of G:

β =
g11
g12

, σ21 = g11, and σ22 =
g11 |G|
g212

, (2.6)

where |G| = g11 g22 − g212 > 0 is the determinant of G.

Likelihood. Let y = (y1, . . . , yT ) denote a collection of T observations. Define5

S =

(
s11 s12
s12 s22

)
:=

T∑
t=1

yt y
>
t =

( ∑T
t=1 y

2
1t

∑T
t=1 y1t y2t∑T

t=1 y1t y2t
∑T

t=1 y
2
2t

)
(2.7)

and

Ĝ =

(
ĝ11 ĝ12
ĝ12 ĝ22

)
:= S/T. (2.8)

The likelihood is given by

p(y|G) =

T∏
t=1

N(yt|02, G). (2.9)

The likelihood can be expressed in terms of the structural parameters as

p(y|β, σ21, σ22) ∝

{
e
− s11

2σ21

(
1

σ21

)T/2}{
e
− s11−2 s12 β+s22 β

2

2σ22

(
β2

σ22

)T/2}
. (2.10)

Note that the likelihood depends on the data only via S and T (or equivalently Ĝ and T ).
These summary statistics are sufficient for inference.

5“x := y” means x is defined as y.
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Prior and posterior. Although it is the structural parameters that are of interest, it is
convenient to focus on the parameters of the covariance matrix G.6 The posterior distribu-
tion for G can be expressed as

p(G|y) ∝ p(y|G) p(G), (2.11)

where p(G) is the prior distribution for G. The conjugate prior for G is the Inverse Wishart
distribution, which has two parameters: p(G) = Inv-Wishart(G|Ψ, ν), where Ψ is a positive
definite matrix and ν > 0 is called the degrees of freedom. With this prior, the posterior
distribution for G is p(G|y) = Inv-Wishart(G|Ψ + S, ν + T ). Here I adopt the so-called
uninformative prior, setting Ψ to the zero matrix and setting ν = 0. Consequently,

p(G|y) = Inv-Wishart(G|S, T ). (2.12)

Assuming T > 3, the posterior mean of G is S/(T − 3).7

At this point we could approximate the posterior distribution for the structural param-
eters by making draws of G from (2.12) and computing corresponding draws of (β, σ21, σ

2
2)

using (2.6). Histograms of the draws, for example, would provide approximations that
could be made arbitrarily accurate by increasing the number of draws of G.8 However, it
is possible to compute the posterior distribution for the structural parameters analytically
and thereby obtain more accurate and in some ways more informative representations.

Reduced-form parameters. In order to compute the posterior distribution of the struc-
tural parameters (β, σ21, σ

2
2) from p(G|y), first re-express the joint distribution for yt in terms

of the product of marginal and conditional distributions:9

N(yt|02, G) = N(qt|0, ω2
1)N(pt|δ qt, ω2

2), (2.13)

where

δ =
g12
g11

, ω2
1 = g11, and ω2

2 =
|G|
g11

. (2.14)

The parameters (δ, ω2
1, ω

2
2) are sometimes referred to as the reduced-form parameters. Com-

paring (2.6) and (2.14), we see the relation between the structural parameters and the
reduced-form parameters:

β = 1/δ, σ21 = ω2
1, and σ22 = ω2

2/δ
2. (2.15)

The properties of the Inverse Wishart distribution deliver the posterior distributions for
the reduced-form parameters (δ, ω2

1, ω
2
2):10

p(δ, ω2
1, ω

2
2|y) = p(ω2

1|y) p(δ, ω2
2|y), (2.16)

6In Appendix D, I focus on the structural parameters and arrive at essentially the same posterior distri-
bution as that produced using the approach described in this section.

7I present additional material relating to the posterior for G in Appendix C.
8This approach is compared with the Bayesian bootstrap in Appendix H.
9This factorization is convenient because qt (= u1t) is exogenous in this system.
10The Jeffreys prior p(δ, ω2

1 , ω
2
2) ∝ 1/(σ2

1 σ
2
2) produces a very similar posterior distribution. For example,

see Zellner (1971, Chapter IX).
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where

p(ω2
1|y) = Inv-Gamma(ω2

1|T−12 , T2 ĝ11) (2.17)

p(δ, ω2
2|y) = N(δ| ĝ12ĝ11

,
ω2
2

T ĝ11
) Inv-Gamma(ω2

2|T2 ,
T
2
|Ĝ|
ĝ11

). (2.18)

In addition, the marginal posterior distribution for δ is

p(δ|y) = Student(δ|ĝ12/ĝ11, |Ĝ|/(T ĝ211), T ). (2.19)

Distribution of the structural parameters. The posterior distribution for the struc-
tural parameters can be computed from the posterior distribution for the reduced-form
parameters using the change-of-variables technique:

p(β, σ21, σ
2
2|y) = p(ω2

1|y)|ω2
1=σ

2
1︸ ︷︷ ︸

p(σ2
1 |y)

(
p(δ, ω2

2|y) δ4
)∣∣∣
δ=1/β, ω2

2=σ
2
2/β

2︸ ︷︷ ︸
p(β,σ2

2 |y)

. (2.20)

We see that σ21 is independent of (β, σ22). The marginal distributions for β and σ22 can be
computed analytically from the joint distribution.

Impulse response and answer to the policy question. We can use (2.15) to express the impulse
response in terms of the reduced form parameters: dpt/du2t = −1/β = −δ. Therefore, in
light of (2.19) the marginal posterior distribution for the impulse response is given by

−1/β|y ∼ Student(−ĝ12/ĝ11, |Ĝ|/(T ĝ211), T ), (2.21)

which simply takes the distribution for δ and changes the sign of the mean. In addi-
tion, (2.21) provides the distribution for the answer to the policy question. In particular,
the distribution for −β is computed as the reciprocal of the Student-t distribution. As
such, we know that p(−β|y) has no moments and (assuming T > 1) the distribution is
bimodal with one positive mode and one negative mode. Therefore, before we see any data
we know −β has a bimodal posterior distribution. The locations and relative importance
of the modes will be determined by the data.

Imposing a restriction on the slope of the demand curve. Economic theory suggests
the restriction that the demand curve slopes downward (i.e., β < 0). In the empirical
sections I will consider results both with and without the restriction. Here I provide some
analytical expressions for the effect of imposing this restriction.

Referring to (2.6) and (2.15), we see that

β < 0 ⇐⇒ g12 < 0 ⇐⇒ δ < 0. (2.22)

Let R denote this restriction. It is easy to express the posterior distribution for the reduced-
form parameters under the restriction:

p(δ, ω2
1, ω

2
2|y,R) = p(ω2

1|y) p(ω2
2|δ, y) p(δ|y,R), (2.23)

where p(δ|y,R) is simply a truncated Student-t distribution. In particular,

p(δ|y,R) =

{
p(δ|y)
α δ < 0

0 otherwise
, (2.24)
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Figure 2. The data: T = 50.

where

α =

∫ 0

−∞
p(δ|y) dδ. (2.25)

The restriction does not affect the distribution for ω2
1, but it does affect the marginal

distribution for ω2
2 (as shown in Appendix E).

The distribution for the impulse response is given by this truncated Student-t distribution:

−1/β|y,R ∼ Student(0,∞)(−ĝ12/ĝ11, |Ĝ|/(T ĝ211), T ). (2.26)

Subject to the restriction, the distribution for the answer to the policy question, −β, is
unimodal.

HPD regions. I will use highest posterior density (HPD) regions to help characterize the
uncertainty in the posterior distributions. As an example consider p(β|y), the posterior
distribution for β (absent the restriction).

First define the set
H(c) := {β ∈ R : p(β|y) ≥ c}, (2.27)

where c ≥ 0. Note that H(0) = R. Also note that for sufficiently large c, H(c) = ∅.
Assuming H(c) is not empty, then every β ∈ H(c) has a higher density than every β 6∈ H(c).
Since p(β|y) is bimodal, H(c) may be composed of two disjoint intervals.

Note that the probability that β is in H(c) is

Pr[β ∈ H(c)] =

∫
H(c)

p(β|y) dβ. (2.28)
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Now suppose (for example)

Pr[β ∈ H(c∗)] = 0.95 (2.29)

for some c∗. Then H(c∗) is the 95% HPD region for p(β|y).

3. Numerical illustration

I set the values of the structural parameters as follows:

β = −5, σ21 = 4, and σ22 = 100. (3.1)

These values imply

g11 = 4, g12 = −4/5, and g22 = 104/25 (3.2)

and

δ = −1/5, ω2
1 = 4, and ω2

2 = 4. (3.3)

I generated data according to (2.3) using T = 50. The data are plotted in Figure 2. In
addition,

S =

(
208.45 −20.37
−20.37 198.69

)
. (3.4)

Given S and T , we may discard the data without loss of information.

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
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Figure 3. Posterior distribution for the impulse respond dpt/du2t =
−1/β = −δ. The probability that −1/β < 0 is about 24%. True value
shown in red.
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Posterior distributions. For reference, the posterior distributions for the reduced-form
parameters and the joint distribution for (β, σ22) are shown in Appendix F.

The distribution for the impulse response dpt/du2t = −1/β = −δ is a Student-t distribu-
tion, as shown in Figure 3. The probability that −1/β < 0 is about 24%. If the restriction
β < 0 were imposed, then the distribution would be truncated at zero, leaving only positive
support (shown in blue).

The posterior distribution for β is shown in Figure 4. The distribution for −β is simply
the distribution for β reflected across the “y” axis; it is shown in Figure 5 (with a wider
range of values). The 95% highest posterior density (HPD) region11 is composed of two
intervals, each of which is quite long. The intervals are [−87.3,−2.1] and [1.4, 92.6]. Thus,
the answer to the policy question is extremely imprecise.

The posterior distribution p(−β|y,R) is shown in Figure 6. The 95% HPD region is
[1.5, 59.5]. Thus, even when the restriction β < 0 is imposed, the answer to the policy
question is very imprecise. Moreover, it remains the case (due to the strong asymmetry)
that the distribution for −β is not well-described by a point-estimate and a standard error.

-40 -20 0 20 40

β

pr
ob
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ty
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ns
ity

Figure 4. Posterior distribution for the elasticity of demand β. Approxi-
mately 90 percent of the probability is shown. The probability that β > 0
is about 24%. The true value is shown in red.

We are done. We have gone as far as we can in providing the policy maker with an answer
to the policy question that provides an honest assessment of the uncertainty involved given
our simple model and the available data. In this sense, we are done. The rest of the paper
deals with issues related to modifying the structural system in one way or another. The
modifications are commonly used and may be useful for some purposes. However, these

11HPD regions are described in Section 2.



TO ANSWER OR NOT TO ANSWER 11

-100 -50 0 50 100

-β

pr
ob
ab
ili
ty
de
ns
ity

95% HPD region

Figure 5. Posterior distribution for −β. The 95% HPD region is indicated.
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Figure 6. Posterior distribution of −β given the restriction β < 0. The
95% HPD interval is −β ∈ [1.5, 59.5].

modifications do not help answer the policy question I have posed. In fact, they tend to
obscure the answer.
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Part 2. Not to answer

4. Scaling the shocks

In Section 1, I characterized and assessed the response of equilibrium price to a one-unit
demand shock — i.e., the magnitude of the shock being one unit. This impulse response
provides the information to answer the policy question.

A popular alternative, by contrast, is to assess the response to a one-standard-deviation
shock — i.e., the magnitude of the shock being one standard deviation of the shock’s
distribution. This approach is implemented by a transformation that amounts to dividing
the structural shocks by their standard deviations. Such a transformation may not be as
innocuous as it sounds. The transformation involves structural parameters that may be
both highly uncertain and highly dependent on other structural parameters. The implicit
interactions may produce strange and surprising results.

To scale the shocks, premultiply (1.3) by Σ−1/2 =

(
1/σ1 0

0 1/σ2

)
obtaining

Cyt = ût, (4.1)

where C = Σ−1/2B and ût = Σ−1/2 ut.
12 By construction

ût
iid∼ N(02, I2) (4.2)

where I2 =

(
1 0
0 1

)
is the 2× 2 identity matrix.

Here is the explicit representation for C:

C =

(
c11 c12
c21 c22

)
=

(
1/σ1 0
1/σ2 −β/σ2

)
. (4.3)

Recall that normalization of the unscaled system appeared in the matrix B as the location
in each row of an element restricted to equal one. Consequently, normalization appears in
C as the location in each row of an element restricted to be positive. In particular, c11 > 0
and c21 > 0.

Given (4.3), the impulse responses are found in

C−1 =

(
σ1 0
σ1/β −σ2/β

)
. (4.4)

In particular, the impulse response of pt to the normalized shock û2t is

dpt
dû2t

= (C−1)22 = −σ2/β. (4.5)

An interesting (and perhaps surprising) perspective on the relation between the scaled
and unscaled impulse responses is brought out when they are expressed in terms of the
reduced-form parameters. Referring to (2.15), we see the unscaled impulse response can be
expressed as −1/β = −δ and the scaled impulse response can be expressed as

−σ2/β = (−δ/
√
δ2)ω2 = sign(−δ)ω2. (4.6)

12Note that σ1 =
√
σ2
1 > 0 and σ2 =

√
σ2
2 > 0 are the natural choices. Other choices are possible, but

as long as one keeps track of the signs of σ1 and σ2 nothing of substance is affected.
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Posterior distributions. The joint posterior distribution for the unscaled and scaled
impulse responses is shown in Figure 7. The marginal posterior distribution for the scaled
impulse response is shown in Figure 8.13 It inherits the distinct bimodality from the joint
distribution. We see that a demand shock of one standard deviation increases equilibrium
price by roughly ±2 units with odds 3-to-1 in favor of +2.14

-0.4 -0.2 0.0 0.2 0.4
-3

-2
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1

2

3

unscaled: -1/β = -δ
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al
ed
:-

σ
2
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=
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gn

(-
δ
)ω

2

Figure 7. Posterior joint distribution for the unscaled [−1/β = −δ] and
scaled [−σ2/β = sign(−δ)ω2] impulse responses.

Before proceeding, it is interesting to examine the relation between the scaled impulse
response −σ2/β and the standard deviation σ2. The joint distribution is shown in Figure 9.
The distribution for the scaled impulse response conditional on the standard deviation is
shown in Figure 10.

Inverse scaled impulse response. The inverse of the scaled impulse response, namely
−β/σ2, is of more interest for our purposes at this point. It tells us the required number of
standard deviations of the demand-curve shock that it takes to increase equilibrium price
by one unit. The posterior distribution for −β/σ2 is shown in Figure 11. Although there is
uncertainty about the sign of−β/σ2, there is very little uncertainty about its magnitude. We
see that it takes a demand shock of roughly ±1

2 standard deviations to increase equilibrium
price by one unit.

We can eliminate the bimodality for the impulse response and its inverse by imposing
the restriction β < 0. If we impose the restriction, then dpt/dû2t = ω2 [see (4.6)]. Note,

13Recall the marginal posterior distribution for the unscaled impulse response as shown in Figure 3.
14I show in Appendix I that the scaled impulse response is essentially (plus or minus) the standard

deviation of observed prices.
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Figure 8. Posterior distribution for the scaled impulse response dpt/dû1t =
−σ2/β. 95% HPD region shown. True value shown in red.
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Figure 9. Joint posterior distribution for the scaled impulse response and
the standard deviation, p(−σ2/β, σ2|y). The distribution of −σ2/β condi-
tional on σ2 = 10 is indicated.
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Figure 10. Posterior distribution for the scaled impulse response condi-
tional on the standard deviation, p(−σ2/β|σ2, y).

however, the posterior distribution of ω2 is changed (albeit slightly) by the imposition of
the restriction. (See Appendix E.) The distribution for −β/σ2 subject to the restriction is
simply (a rescaled version) of the distribution in Figure 11 restricted to the right of zero.

The data provide very precise inferences about the magnitude of a standardized demand
shock required to raise equilibrium price by one unit. However, what is needed (to answer
the policy question) is the product of (1) the required number of standard deviations and
(2) the standard deviation itself: (−β/σ2) × σ2 = −β. As we have seen, the uncertainty
associated with −β is substantial. Consequently, the distribution for −β/σ2 provides a
potentially misleading assessment of the uncertainty involved in the answer to the policy
question. Compare Figure 11 with Figure 5. The differences in the distributions are largely
accounted for by the uncertainty in σ2.

The marginal posterior distribution for σ2 is shown in Figure 12. It is clear from Figure 12
that the posterior uncertainty about the value for σ2 is quite large. The 95% highest
posterior density region is the interval [3.1, 179.]. There is a 4 percent change that σ2 > 200.

5. Renormalizing the model

We now turn to the question of the effect of renormalizing the a system of structural equa-
tions. The choice of normalization is a substantive issue because the (structural) impulse
responses are determined in part by the normalization.

Suppose we multiply both sides of (1.1b) by 1/β and rearrange:

pt = (1/β) qdt + {(−1/β)u2t}. (5.1)
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Figure 11. Posterior distribution for −β/σ2, the number of standard devi-
ations of the demand shock required to raise equilibrium price by one unit.
True value shown in red.
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Figure 12. Posterior distribution for the standard deviation of a demand-
curve shock σ2. Approximately 96 percent of the probability shown. The
95% highest posterior density region is σ2 ∈ [3.1, 179.]. True value shown in
red.



TO ANSWER OR NOT TO ANSWER 17

Table 1. Factorizations of G. The unscaled inverse-demand factorization
is the so-called triangular factorization, since Ω is diagonal and L−1 is lower-
triangular with ones on the main diagonal as shown in (5.6). For more on
the triangular factorization, see Section 4.4 in Hamilton (1994).

Scaled

Normalization No Yes

Demand B−1Σ (B−1)> C−1 I2 (C−1)>

Inverse demand L−1Ω (L−1)> M−1 I2 (M−1)>

Table 2. Impulse responses in terms of the reduced-form parameters.

Scaled

Normalization No Yes

Demand (B−1)22 = −δ (C−1)22 = sign(−δ)ω2

Inverse demand (L−1)22 = 1 (M−1)22 = ω2

This amounts to renormalizing the demand curve as an inverse demand curve, where the
structural shock is no longer u2t but rather (−1/β)u2t. The renormalized system can be
expressed as

qst = v1t (supply equation) (5.2a)

pt = δ qdt + v2t (inverse demand equation) (5.2b)

qdt = qst = qt. (equilibrium condition) (5.2c)

In expressing (5.2) I have used 1/β = δ and I have given the structural shocks their own
labels. The equations in (5.2) are normalized so that v1t = u1t remains a supply-curve shock
while v2t = −δ u2t is an inverse-demand-curve shock:

∂qst
∂v1t

= 1 and
∂pt
∂v2t

= 1. (5.3)

We can express the renormalized system as Lyt = vt where

L =

(
1 0
−δ 1

)
. (5.4)

The normalization is expressed in L as the location in each row of an element set to 1. By
comparing the second row of L with that of B, the renormalization is evident: L22 = 1

versus B21 = 1. With the renormalized system, we have vt
iid∼ N(02, Ω), where15

Ω = LGL> =

(
ω2
1 0

0 ω2
2

)
. (5.5)

15Note L = DB and vt = Dut, where D =

(
1 0
0 −1/β

)
. Thus Ω = DΣD>.
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The reader may recognize the renormalized system as another representation of the marginal-
conditional factorization shown in (2.13).

The (unscaled) impulse responses are given by

L−1 =

(
1 0
δ 1

)
. (5.6)

Notice that the impulse response of equilibrium price to a one unit inverse-demand-curve
shock is identically one:

dpt
dv2t

= (L−1)22 = 1. (5.7)

The “answer” to the policy question implied by this impulse response is straightforward:
Raise equilibrium price by one unit. But this answer is useless because it misses the point.
The policy maker has no way to raise equilibrium price directly; the policy question is about
the effect of demand shocks on equilibrium price.

Impulse responses to scaled shocks. We now turn to the impulse responses to scaled
inverse-demand-curve shocks. Premultiply Lyt = vt by Ω−1/2 to obtain Myt = v̂t, where
M = Ω−1/2 L and v̂t = Ω−1/2 vt.

16 By construction

v̂t
iid∼ N(02, I2). (5.8)

The explicit representation for M is

M =

(
m11 m12

m21 m22

)
=

(
1/ω1 0
−δ/ω2 1/ω2

)
. (5.9)

The restriction m22 > 0 reflects the inverse-demand normalization. Given (5.9), the scaled
impulse responses are found in

M−1 =

(
ω1 0
δ ω1 ω2

)
. (5.10)

In particular, the impulse response of pt to the normalized shock v̂2t is

dpt
dv̂2t

= (M−1)22 = ω2. (5.11)

Note that scaled impulse response is nothing more than the standard deviation of the
unscaled shock. My view is that the scaled impulse response is even less helpful than
the unscaled version in addressing the policy question, because the unscaled version is
transparently irrelevant while the scaled version is not. Nevertheless, I show the posterior
distribution of the scaled impulse response p(ω2|y) in Figure 13 for future reference. The
distribution for ω2 is almost indistinguishable from (but not identical to [see Appendix E])
that for −σ2/β under the restriction β < 0. The interpretation, however, is quite different.

If we were to impose the restriction in both normalizations, then the two scaled impulse
responses would be would have identical distributions. Nevertheless, the unscaled impulse
responses would have dramatically different distributions.

16Note that ωi =
√
ω2
i > 0.
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Figure 13. Posterior distribution for the scaled impulse response of an
inverse-demand-curve shock to equilibrium price.

6. Likelihood preserving normalization

Waggoner and Zha (2003, WZ hereafter) provide a useful discussion of different normal-
izations.17 Their contribution may be viewed as two-fold. First, they show that impulse
responses will be affected by different normalizations. In effect, I have illustrated this point
in earlier sections of this paper.

Second, as they say in the abstract to their paper, “We develop a general normalization
rule that preserves the likelihood shape and maintains coherent economic interpretations for
both recursive and nonrecursive models.” However, their normalization rule produces the
inverse-demand-curve normalization for the system in this paper and, because the impulse
responses from this normalization do not answer the policy question, I therefore conclude
their likelihood preserving normalization is not generally applicable.

Normalization in scaled systems. WZ discuss normalization and their rule in terms of
scaled systems. Therefore, we need to examine the matrices C and M presented in (4.3)
and (5.9), respectively, that characterize the scaled versions of the two normalizations of
the system in this paper. Since c12 = m12 = 0, we can represent both C and M as

H =

(
h11 0
h21 h22

)
, (6.1)

making the appropriate substitutions for the nonzero elements. At this level of abstraction,
normalization can be understood as choosing an element from each row of H and restricting

17See also Hamilton et al. (2007) and Kociecki (2013).
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it to be positive.18 For the first row there is no choice: h11 > 0. For the second row, however,
there is a choice: h21 > 0 versus h22 > 0. Examining C and M , the choices are seen to be
h21 > 0 for the demand-curve normalization (since c21 > 0) and h22 > 0 for the inverse-
demand-curve normaliztion (since m22 > 0).

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

h21

h 2
2

Figure 14. Contours of p(y|h21, h22). The area to the right of the red line is
consistent with h21 > 0 and the demand-curve normalization, while the area
above the blue line is consistent with h22 > 0 (i.e., the likelihood preserving
normalization) and the inverse-demand-curve normalization.

Unnormalized likelihood. WZ address the effects of the choice of normalization by ex-
amining the unnormalized likelihood in terms of the elements of H. The unnormalized
likelihood can be expressed as [cf. (2.10)]

p(y|h11, h21, h22) ∝
{
e−

s11 h
2
11

2
(
h211
)T/2}{

e−
s11 h

2
21+2 s12 h21 h22+s22 h

2
22

2
(
h222
)T/2}

. (6.2)

Since h21 and h22 only appear in the second factor on the right-hand side of (6.2), we
restrict attention to p(y|h21, h22). This latter unnormalized likelihood is shown in Figure 14,
using the values of S and T from the numerical illustration — which itself is based on

18If different sign choices for σi and ωi had been made, then those sign choices would carry through to
this discussion.
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the parameter values provided by WZ for the example in their paper.19,20 Note that the
likelihood equals zero along the blue line (where h22 = 0).

Referring to Figure 14, it is evident that h21 > 0 limits the parameter space to the area
to the right of the red line, while h22 > 0 limits the parameter space to the area above the
blue line. If one were to impose β < 0 [or any of the equivalent restrictions in (2.22)], then
the parameter space in Figure 14 would be limited to the first quadrant — regardless of the
chosen normalization.

Figure 14 clearly illustrates WZ’s likelihood preserving normalization for this example,
namely h22 > 0. Looking at the contour plot, this choice has a strong aesthetic appeal
since it “preserves” a single mode. By contrast, the alternative normalization (h12 > 0)
unattractively slices through the two modes. Indeed, WZ refer to “the distortion it causes
to the shape of the likelihood.”21

To illustrate this distortion, WZ consider the distribution for 1/h22 under both normal-
izations. These distributions correspond to Figure 13 for h22 > 0 and Figure 8 for h21 > 0.22

WZ first praise (their equivalent of) the unimodal distribution in Figure 13 before present-
ing (their equivalent of) the bimodal distribution in Figure 8 as the poster-child for the
distortion.

Nevertheless, aesthetics must be overridden by subject-matter considerations: In order to
answer the policy question one must adopt the demand-curve normalization, and therefore
one must choose h21 > 0 and reject the likelihood preserving normalization.23

19See pp. 332–334 in Waggoner and Zha (2003). I show the correspondence between the two examples
in Appendix J.

20Figure 14 corresponds to Figure 2 in Waggoner and Zha (2003). See Appendix J for a discussion of the
differences in appearance between the two figures.

21Page 333.
22Figures 13 and 8 correspond to Figures 1(a) and 1(b) in Waggoner and Zha (2003). See Appendix J

for a discussion of the differences in appearance between the two sets of figures.
23Hamilton et al. (2007, pp. 236–237) concede the inability to answer the policy question when the inverse-

demand-curve normalization is used. Nevertheless, they reject the demand-curve normalization because the
resulting distribution for β is poorly described by a point estimate and a standard error.
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Appendix A. Bayes’ rule

In this appendix I present the briefest of introductions to Bayes’ rule.

Joint, marginal, and conditional distributions. Let p(y, θ) denote the (density for)
the joint distribution of y and θ. Marginal distributions for y and θ can be obtained from
the joint distribution by integration:

p(y) =

∫
p(y, θ) dθ and p(θ) =

∫
p(y, θ) dy. (A.1)

Conditional distributions can be expressed in terms of joint and marginal distributions:

p(y|θ) =
p(y, θ)

p(θ)
and p(θ|y) =

p(y, θ)

p(y)
. (A.2)

Of course the conditional distributions integrate to one. For example,∫
p(y|θ) dy =

∫
p(y, θ)

p(θ)
dy =

1

p(θ)

∫
p(y, θ) dy =

p(θ)

p(θ)
= 1. (A.3)

Sometimes it is convenient to express conditional distributions as proportionalities rather
than equalities:

p(y|θ) ∝ p(y, θ) and p(θ|y) ∝ p(y, θ). (A.4)

Bayes’ rule. By rearranging the two equations in (A.2), we see the joint distribution can
be factored into the product of conditional and marginal distributions in either of two ways:

p(y, θ) = p(θ|y) p(y) = p(y|θ) p(θ)︸ ︷︷ ︸
two ways

. (A.5)

The “two ways” can be rearranged as Bayes’ rule:

p(θ|y) =
p(y|θ) p(θ)

p(y)
. (A.6)

Each of the objects in (A.6) has one or more names: p(θ) is the prior distribution for
θ, p(θ|y) is the posterior distribution for θ, p(y|θ) is the likelihood for θ, and p(y) is the
marginal likelihood of y (sometimes known as the evidence).

Typically in (A.6), y is interpreted as data (composed of one or more observations) and
θ is interpreted as one or more parameters. The data are observed and therefore fixed.
Since y is fixed, p(y) is a number and p(y|θ) is a function of θ. By contrast, the parameters
are unobserved and therefore subject to uncertainty. That uncertainty is characterized
by a probability distribution. Bayes’ rule shows how to use observations to update that
distribution.

Appendix B. Gallery of densities

For reference I include the densities of the distributions used in this paper. For the
multivariate distributions, x and µ are vectors of length k and Σ is a k× k positive definite
matrix. Scalar versions of the multivariate distributions can be obtained by setting k = 1.

The multivariate normal distribution:

N(x|µ,Σ) = (2π)−
k
2 |Σ|−

1
2 e−

1
2
(x−µ)>Σ−1(x−µ). (B.1)
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The multivariate Student distribution (ν > 0):

Student(x|µ,Σ, ν) =
Γ(ν+k2 )

Γ(ν2 )
(ν π)−

k
2 |Σ|−

1
2

(
1 +

1

ν
(x− µ)>Σ−1(x− µ)

)− 1
2
(ν+k)

. (B.2)

If z ∼ Student(µ, σ2, ν), then x = 1/z ∼ Inv-Student(µ, σ2, ν) where

Inv-Student(x|µ, σ2, ν) = Student(1/x|µ, σ2, ν)/x2. (B.3)

The Inverse Gamma distribution (x is a scalar and a, b > 0):

Inv-Gamma(x|a, b) =
ba e−

b
x

Γ(a)xa+1
, (B.4)

where Γ( · ) is the gamma function.
The Inverse Wishart distribution (X and Ψ are k × k positive definite matrices):

Inv-Wishart(X|Ψ, ν) =
|Ψ |

ν
2

2
ν k
2 Γk(

ν
2 )
|X|−

1
2
(ν+k+1) e−

1
2
tr(ΨX−1), (B.5)

where tr( · ) is the trace function and Γk( · ) is the multivariate gamma function.

Appendix C. Additional material related to p(G|y)

Predictive distribution. Given the observed data, uncertainty about the parameters is
embodied in the posterior distribution, p(G|y). Taking account of that parameter uncer-
tainty, one can compute a probability distribution for new observations. This predictive
distribution is

p(yT+1|y) =

∫
p(yT+1|G) p(G|y) dG

=

∫
N(yT+1|0, G) Inv-Wishart(G|S, T ) dG

= Student(yT+1|02, Ĝ, T − 1).

(C.1)

Prior versus likelihood. Suppose we divide our data into two groups: a “training set”
composed of the the first T0 observations from which we develop proper prior and a “holdout
set” of the remaining T1 = T − T0 observations that characterize the likelihood. Let y0 =
(y1, . . . , yT0), y1 = (yT0+1, . . . , yT ), S0 =

∑T0
t=1 yt y

>
t , and S1 =

∑T
t=T0+1 yt y

>
t . Then T0 +

T1 = T , S0 + S1 = S, and y0 ∪ y1 = y.
Let the prior based on the training set be

p(G|y0) = Inv-Wishart(G|S0, T0). (C.2)

Then the posterior distribution for G is unaffected by the choice of T0:

p(y1|G) p(G|y0) ∝ Inv-Wishart(G|S, T ) = p(G|y). (C.3)

Moreover, since the posterior distribution is unaffected by the choice of T0, the predictive
distribution is unaffected as well.
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Marginal likelihood. By contrast, the marginal likelihood of the hold-out data y1 is affected
by the choice of T0. The marginal likelihood is given by

p(y1|y0) =

∫
p(y1|G) p(G|y0) dG. (C.4)

We can obtain some insight by expressing the marginal likelihood in terms of a rearrange-
ment of Bayes’ rule:

p(y1|y0) =
p(y1|G) p(G|y0)

p(G|y)
. (C.5)

Since the left-hand side of (C.5) is independent of G, we may evaluate the right-hand side
by choosing any convenient value for G. Given a fixed value for G, changes in T0 will
leave the denominator of the right-hand side unchanged. However, changes in T0 will affect
the numerator because observations are transferred from one factor to the other, thereby
producing changes in the product (as one may verify).

Appendix D. An explicit prior for the structural parameters

Here I put a prior directly on the structural parameters (β, σ21, σ
2
2). In particular, let

p(β, σ21, σ
2
2) = p(β)/(σ21 σ

2
2) where p(β) is specified below. Recall the likelihood p(y|β, σ21, σ22)

is given by (2.10). Then the marginal likelihood for β is

p(y|β) =

∫∫
p(y|β, σ21, σ22)

σ21 σ
2
2

dσ21 dσ
2
2 ∝

(
β2

s11 − 2 s12 β + s22 β2

)T/2
. (D.1)

There are two features of note. First, this likelihood equals zero at β = 0: p(y|β)|β=0 = 0.
Second, this likelihood does not go to zero as β gets large in magnitude: limβ→∞ p(y|β) =
limβ→−∞ p(y|β) > 0. Owing to this latter feature, this likelihood is not normalizable and
thus a proper prior for β is required.

Recall that the structural model has no solution if β = 0, so it is natural (but not
necessary) to adopt a prior for which the density goes to zero as β goes to zero. One such
prior (that allows for both positive and negative β) is obtained by letting the reciprocal of
β have a normal distribution centered at zero:

1/β ∼ N(0, s2), (D.2)

for some s > 0. In this case, the density for β is

p(β) =

 e
− 1

2 s2 β2√
2π s β2 β 6= 0

0 β = 0
. (D.3)

This distribution is symmetric around zero, bimodal [with modes at ±1/(
√

2 s)], and has
no finite moments.

It turns out that p(β|y) is not sensitive to the free parameter s if s � 1. In fact, the
posterior distribution for β given s� 1 is essentially the same as that produced using the
Inverse Wishart distribution as described in the main text. [See Figure 4.] The reason for
the similarity is that the implicit prior (in the main text) for δ = 1/β is a approximately
N(0, s2) with s� 1.
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Alternative prior for β. Suppose intead p(β) = N(β|0, s2). The posterior distribution is
not available analytically. A large number of finite moments can be computed numerically.
The length of highest posterior density regions for β are quite sensitive to the value of s;
they can be shortened or lengthened dramatically. The posterior distribution converges
pointwise to zero as s→∞.

Appendix E. Marginal distribution of ω2
2 given δ < 0

In this appendix I show how the marginal posterior distribution for ω2
2 is modified by the

imposing the restriction δ < 0.
The marginal distribution for ω2

2 is modified via the dependence between δ and ω2
2

[see (2.18)]. It is convenient to express this dependence as

p(ω2
2|δ, y) =

p(δ|ω2
2, y) p(ω2

2|y)

p(δ|y)
. (E.1)

It follows that24

p(ω2
2|y,R) =

∫
p(ω2

2|δ, y) p(δ|y,R) dδ = p(ω2
2|y)α−1

∫ 0

−∞
p(δ|ω2

2, y) dδ. (E.2)

Therefore,
p(ω2

2|y,R)

p(ω2
2|y)

= α−1
∫ 0

−∞
p(δ|ω2

2, y) dδ. (E.3)

In the numerical example, the effect on the marginal distribution for ω2
2 is not large but

nevertheless the systematic shift in the densities is evident in Figure 15.

Appendix F. Additional posterior distributions

Reduced-form parameters. The joint posterior distribution for (δ, ω2
2) is shown in Fig-

ure 16. Although δ and ω2
2 are not independent, the dependence between them is not

strong. The marginal posterior distributions for (ω2
1, ω

2
2) and δ are shown in Figures 17

and 18 respectively. Note that the probability that δ > 0 is about 24 percent.

Structural parameters. The joint distribution for (β, σ22) is shown in Figure 19. It has
two “branches.” The two branches are the consequence of the bimodality of β mentioned
in Section 2. Within each of the two branches β and σ22 are highly dependent.

Appendix G. Maximum likelihood estimation

Given the likelihood for the structural parameters (2.10), define the log-likelihood

L(θ) := log
(
p(y|β, σ21, σ22)

)
, (G.1)

where θ = (β, σ21, σ
2
2). The maximum likelihood values θ̂ are given by the (unique) solution

to∇L(θ) = 0. They turn out to be the “plug-in” values using Ĝ = S/T [compare with (2.6)]:

β̂ =
ĝ11
ĝ12

, σ̂21 = ĝ11, and σ̂22 =
ĝ11 |Ĝ|
ĝ212

. (G.2)

24Refer to (2.23)–(2.25) for the notation used in (E.2).
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Figure 15. log
(
p(ω2

2|y,R)/p(ω2
2|y)

)
, where p(ω2

2|y,R) denotes the posterior

distribution for ω2
2 given the restriction δ < 0.

For the numerical illustration, the maximum likelihood values are

β̂ = −10.2, σ̂21 = 4.2, and σ̂22 = 411.9. (G.3)

The asymptotic covariance matrix can be approximated by (−∇2L(θ)|
θ=θ̂

)−1. Therefore,

the asymptotic distribution for β̂ can be expressed as

β̂
a∼ N(β, σ̂2β), (G.4)

where the asymptotic variance for β̂ is

σ̂2β =
ĝ211 |Ĝ|
ĝ412 T

=
ĝ11
ĝ212

(
σ̂22
T

)
. (G.5)

The asymptotic distribution for β̂ is unimodal and allows for the possibility that a confidence

interval may cross zero. The distribution for β̂ ignores the global aspects of the likelihood

(as they do not matter asymptotically). The asymptotic distribution for β̂ is shown in
Figure 20.

The sampling distribution can be computed analytically. Note that

Ĝ|G,T ∼Wishart(G,T − 1). (G.6)

Consequently,

δ̂ =
ĝ12
ĝ11
∼ Student(g12/g11, |G|/((T − 1) g211), T − 1). (G.7)

It follows that the sampling distribution for β̂ is the reciprocal of a Student-t distribution

and is thus bimodal. See Figure 21. The probability that β̂ is positive is about 8 percent.
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Figure 16. Contours of the posterior distribution for (δ, ω2
2). More than 99

percent of the probability is in the region shown. True value shown in red.
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Figure 17. Posterior distributions of ω2
1 and ω2

2. True value shown in red.
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Figure 18. Posterior distribution of δ. (True value shown in red.) Proba-
bility of δ > 0 is about 24 percent.

The is somewhat less that the 23 percent we have seen for the posterior probability that β
is positive.

In general, of course, we will not know the true values and will not be able to compute
the sampling distribution this way. Instead, we can appeal to the bootstrap. Appendix H

shows (among other things) that the bootstrapped distribution for β̂ has much in common
with the sampling distribution.

Appendix H. The bootstrap

There are two types of bootstrap. The frequentist bootstrap produces a sampling distri-

bution for an estimator such as the maximum likelihood estimator β̂ [see (G.2)]. As such,
the bootstrap provides a distribution that may be more consistent with the global features

of the likelihood than the asymptotic distribution for β̂. By contrast, the Bayesian boot-
strap produces a posterior distribution for an unknown parameter such as β. As such, the
bootstrap provides an alternative posterior distribution that can be compared with what
is presented in the main text as a robustness check. The two bootstrap distributions (the

sampling distribution for β̂ and the posterior distribution for β) are quite similar, although
their interpretations and uses are quite different.25

Each of the two bootstrap distributions depends on the data y = (y1, . . . , yT ) and a set
of random weights w = (w1, . . . , wT ). The weights are nonnegative and sum to one. The
probability distribution for the weights is different for the two types of bootstrap. Let

25The frequentist bootstrap was introduced by Efron (1979) and the Bayesian bootstrap was introduced
by Rubin (1981). Lancaster (2009) provides an interesting comparison.
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Figure 19. Contours for the posterior distribution for (β, σ22). Approxi-
mately 61 percent of the probability is in the region shown. True value
shown in red.

w = (1/T, . . . , 1/T ) so that Tw = (1, . . . , 1). For the frequentist bootstrap w is drawn from
a normalized multinomial distribution with equal probabilities,

Tw ∼ Multinom(T,w). (H.1)

For the Bayesian bootstrap w is drawn from a flat Dirichlet distribution,

w ∼ Dirichlet(Tw). (H.2)

The two distributions for w have the same mean, w, and similar variances and covariances.
However, the interpretations of the distributions for w is conceptually quite different. For
the frequentist bootstrap, the weights represent the selection of observations in the process
of resampling the data with replacement. For the Bayesian bootstrap, the weights are
unoberved parameters and (H.2) is the posterior distribution of those parameters.26

26The Bayesian bootstrap is sometimes referred to a smoothed version of the frequentist bootstrap because
the Dirichlet distribution is continuous and the normalized multinomial distribution is discrete. I prefer to
think of the frequentist bootstrap and a “quick and dirty” approximation to the Bayesian bootstrap.
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Figure 20. Asymptotic distribution for β̂ [see (G.4)].
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Figure 21. Sampling distribution for β̂ [see (G.4)]. Approximately 96% of
the probability is shown. Approximately 8% of the distribution is positive.
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Figure 22. Posterior distribution for β computed using 106 draws from the
Bayesian bootstrap. Approximately 90 percent of the probability shown.
Compare with Figure 4.

Both types of bootstrap combine the data and the weights in the same way. In particular,
let

G̃ =

T∑
t=1

wt (yt y
>
t ) =

( ∑T
t=1wt y

2
1t

∑T
t=1wt y1t y2t∑T

t=1wt y1t y2t
∑T

t=1wt y
2
2t

)
. (H.3)

Given the similarities in the distributions for w between the two types of bootstrap, the

distributions for G̃ are similar as well. For example, E[G̃] = Ĝ (= S/T ) for both distribu-
tions.

The interpretation of G̃ is different between to the two types of bootstrap. For the
frequentist bootstrap, it is an estimator for which the sampling distribution is determined
by the distribution for w (in conjunction with y, which represents the population distribution
for yt and is therefore fixed); for the Bayesian bootstrap it is a functional of the posterior
distribution for w (where the “value” associated with category t is given by yt y

>
t ).

Given G̃, define27

β̃ =
g̃11
g̃12

, σ̃21 = g̃11, and σ̃22 =
g̃11 |G̃|
g̃212

. (H.4)

The similarity in the two distributions for G̃ carries over the the distributions for the
structural parameters via (H.4).

27In passing, note that E[β̃] 6= ĝ11/ĝ12 owing to Jensen’s inequality.
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The bootstrap distributions are computed as follows. First make R draws {w(r)}Rr=1 from

the appropriate distribution for w. Next, for each w(r) compute G̃(r) using (H.3). Finally,

compute any function of G̃(r) desired, such as β̃(r) using (H.4).
From the Bayesian perspective, the density of the posterior distribution for β may be

approximated by a histogram of {β̃(r)}Rr=1.
28 See Figure 22. Note the striking similarity

between this density and that shown in Figure 4. This is driven by the fact that the
posterior distribution for G given by the Bayesian bootstrap is very similar to that given
by the Inverse Wishart distribution.

From the frequentist perspective, the bootstrap distribution for β̃ provides (an approxi-

mation to) the sampling distribution for the maximum likelihood estimator β̂. The frequen-

tist bootstrap distribution for w produces an almost identical distribution for β̃ as shown

in Figure 22. Thus the bootstrap approximation to the sampling distribution for β̂ given
T = 50 appears to have much in common with the actual sampling distribution as shown
in Figure 21.

Appendix I. Source of the precision of the scaled impulse response

The source of the the precision of the scaled impulse response (−σ2/β) and its inverse
can be found in the likelihood for (β, σ). The likelihood is also the source of the imprecision
of β and of σ2. Figure 23 shows the likelihood for (β, σ2).

29 The red lines show where
σ2/β = ±2. The lines appear to follow the ridges of the likelihood.

The ridges can be characterized as

σ2/β ≈ ±
√
ĝ22. (I.1)

Recall ĝ22 is an element of Ĝ = S/T . It is the maximum likelihood estimate of g22, the
variance of pt. Thus the slopes of the ridges depend on the standard deviation of observed
prices. Given the example,

√
ĝ22 = 1.99. (Compare this with

√
g22 = 2.04.) Approxima-

tion (I.1) provides a convenient caricature of the likelihood.
Approximation (I.1) can be derived in two steps. First, compute the two local maxima

for β conditional on σ2:

β∗ =
ĝ12

2 ĝ22
±

√(
ĝ12

2 ĝ22

)2

+
σ22
ĝ22

. (I.2)

Second, take the limit

lim
σ2→∞

β∗/σ2 = ±
√

1/ĝ22. (I.3)

This result can be expressed as (I.1).

28See the paragraph that follows (2.12) about drawing from p(G|y).
29See the second factor on the right-hand side of (2.10) for the analytical expression. Previously we

treated this factor as the likelihood for (β, σ2
2).
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Figure 23. Contours of the likelihood for (β, σ2). The red lines show where
σ2/β = ±2. The lines appear to follow the ridges of the likelihood.

Appendix J. Correspondence between examples

In this appendix I show the correspondence between the example in Waggoner and Zha
(2003, WZ hereafter) and the example in this paper.30

The crucial feature of WZ’s example is their matrix A which plays the role of my matrix
H [see (6.1)]:

A =

(
a11 a12
a21 a22

)
. (J.1)

The correspondence between the two matrices is complicated by the fact that I reversed the
order of the variables and transposed the equations relative to the way WZ expressed the
system. Assuming a12 = 0, the relation between H and A is given by31(

h11 0
h21 h22

)
=

(
a22 0
a21 a11

)
. (J.2)

Consequently, in their notation the normalizations a21 > 0 and a11 > 0 correspond to
h21 > 0 and h22 > 0, respectively.

30The example in WZ is dynamic and includes a lag (characterized by by their matrix A1). To simplify
the example, I have ignored the lagged term because it has no effect on the issues under consideration.

31H = PA>P , where P =

(
0 1
1 0

)
is a permutation matrix.
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In order to generate the data for their example, WZ provide the following numerical
values:

A =

(
0.5 0
0.1 0.5

)
. (J.3)

These are the values I have used for my numerical illustration. In addition, WZ set T = 50
as I do. However, because the datasets are randomly generated my data do not exactly
match theirs. Nevertheless, the features of the likelihoods computed from the data are very
similar, suggesting that neither of our datasets is atypical.

In addition to data differences, there is another reason why the corresponding plots for
1/h11 would not be identical. In particular, I am displaying posterior distributions which
involve a prior for ω2

2 proportional to 1/ω2
2, while WZ compute the distribution directly

from the likelihood itself.
Finally, WZ’s Figure 2, which corresponds to my Figure 14, requires a more detailed

discussion. I believe the axes in their Figure 2 are mislabeled and the labels should be
swapped. Differences in appearance between WZ’s Figure 2 and my Figure 14 are attribut-
able to the following three things (in addition to data differences): Their plot is transposed
relative to mine, the domain of their plot is substantially larger than that of mine, and they
display contours for the log of the likelihood whereas I display contours for the likelihood
itself.
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